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ON THE THEORY OF LAMINAR BOUNDARY LAYERS

By TEL von KARMiN and C. B. MILLIKAN

INVOLVING SEPARATION “

SUMMARY

The paper presents a mathematicaldiscussion of the
laminar boundarylayer, which ICaSdevelopeduith a view
of facilitating the investigation of those boundary layers
in particular for which the phenomenon of separation
occurs. The treatmentstartswith a slight modificationof
theform of the boundarylayer eguation$rst published by
von ik%ses. Two approximate solutions of this equation
are found, one of which is exact at the outer edge of the
boundary layer while the other is exact at the wall. The
$nal solution is obtained by joining these two solutions
at the in$ection points of the velocity profiles. Thejinal
solution is given in terms of a series of universalfunctions
for a fairly broad class of potential velocity distributions
outside Of the boundary layer. L?etailedcalculatio~ of
the boundary layer characteristicsare worked out for the
case in which the potential velocity is a linearfunction of
thedistancefrom theupstreamstagnationpoint. Finally
the complete separation point characteristics are deter-
minedfor the boundimylayer associatedwith a potentiul
velocity distribution made up of two Linearfunctions of
the distancefrom the stagnation point. It appears that
extens@s of the detailed calculations to more complex
potenttal flows can befairly easily carried out by using
the explicitformulae given in the paper.

1. INTRODUCTION

The theory of the laminar boundary layer has two
important applications: First, the computation of skin
friction in the range of low Reynolds Numbers; second,
the ex-kmation of the separation phenomena. Both
problems require the calculation of the “development
of the boundary layer” under the assumption of a
given pressure distribution along the wall. In some
simple cases, as in the case of constant pressure and in
that of a pressure decreasing proportionally to a given
power of the length measured along the wall, the partial
differential equation of the boundary layer theory can
be reduced to a total equation and integrated without
difficulty. In these cases all “cross sections” of the
boundary layer show Clsimilar velocity proiiles” and
essentiallyonly the scale of the velocity and the length-
scale over the cross sections, i.e., the ~’thickness of the
boundary layer” are variable. However, in general,

especially in the case in which the pressureis increasing
along the wall, the distortion in the shape of the veloc-
ity proiile is the very point of interest. In these cases
the solution of the partial differential equation itself is
necessary. Unfortunately, all methods indicated until
the present involve such an amount of numerical work
as to discourage any engineer anxious to use the theory
for solution of practical problems.

K. Pohlhausen (reference 1), at the suggestion of the
first author, tried to reduce the boundary layer prob.
lem to the solution of a total differential equation in the
following way: He chooses a certain family of plausible
“velocity profiles” with variable shape in such way
that the influence of the rate of change of the pressure
along the wall is taken into account by a boundary
condition, but one parameter (for instance, the “thick-
ness” of the boundary layer) is left undetermined.
Then he applies the momentum law to a strip of the
boundary layer enclosed between two adjacent cross
sections using the integral relation introduced by the
first author. “This relation leads to a total differential
equation for the undetermined parameter and by
integration of this equation the ‘rdevelopment of the
boundary layer” is obtained.

This method has been criticized especially by von
Mises (reference 2), who pointed out that the results
depend greatly on the choice of the family of velocity
profiles. This is true to some extent, in spite of the
fact that in the simple cases mentioned above plausibly
chosen velocity profiles lead to close agreement with
the exact solutior both for the value of the skin
friction and the thickness of the boundary layer.
Furthermore, the fact that the method can be applied
to the case of the turbulent layer, in which we ignore
the partial differential equations of the motion, but
know the approximate shape of the velocity proiile,
has to be considered as a great advantage of the
method. As a matter of fact, all more or less successful
developments in the theory of the turbulent boundary
layer are based on the Kfmmfm-Pohlhausen procedure.

However, in the case of the laminar boundary layer,
the equations of the motion are known and the difE-
culties aremerely mathematical. Thus a method which
contains less arbitrary assumptions than the Pohl-
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hausen procedure and involves less numerical calcula-
tions, than the methods used by Hiemenz, Boltze,
Thorn, Green (reference 3), etc., would represent a
deshable improvement of the situation.

The authors became interested in the solution of the
boundary-layer equation in connection with their in-
vestigations concerning the maximum lift (stalling
point) of airfoils. It is generally lmown that stalling
is due to the separation of the boundary layer at the
upper surface of an airfoil, but in general it is assumed
that the boundary layer is turbulent, except in the
immediate neighborhood of the stagnation poinfi, over
the range of high Reynolds Numbers corresponding to
actual tight or usual wind-tunnel test conditions.
Recent investigations in the 10-foot diameter wind
tunnel of the Guggenheim Aeronautics Laboratory at
the California Institute of Technology have revealed a
systematic and very considerable influence of the
amount of turbulence in the wind stream on the value
of the maximum lift (reference 4). This influence could
be correlated very exactly with the influence of the

FIGURE I.—FIuid deznent in the boundary layer.

turbulence on the so-called “critical” Reynolds Number
of a sphere (Reynolds Number characteristic for the
sudden drop of the drag coefficient). As L. I?randtl
(reference 5) pointed out, the influence of turbulence
on the latter phenomenon is due to the fact that the
rebgimein the boundary layer changes earlier from
the laminar to the turbulent state, if the turbulence of
the wind stream is increased. The authors concluded
that a similar process might explain the irdluence of
turbulence on the stalling of airfoils. The conception
may be stated as follows: The low values of Iift maxima
in quiet air streams axe due to the separation of the
Iaminar boundary layer, while in a turbulent stream
the regime changes before separation occurs and so the
lift maximum is raised. For the investigation of such
an hypothesis, the calculation of the development of
the laminar boundary layer from the stagnation point
up to the separation point appeared as a necessity.

This paper presents the method suggested by the
authors for the computation of the development of a
boundaxy layer, especially suitable for the case of in-
creasing pressure involviug separation. As will be
seen, the fundamental equation of motion is used in the

form given by von lMises in his paper (reference 2)
with a slight modification. This modification furnishes
the possibility that the solution of an equation idcmticnl
with that of ordinary heat conduction, furnishes a
first approximation for the velocity field in the region
away from the wall. In addition, the shape of ‘the
velocity proiile near the wall is calculated from tlm
given pressure distribution along the wall. The joining
of these two solutions is carried out in a rather rough
way, at least from a mathematical point of view, Tlm
authors hope that experts in applied mathematics will
accomplish the task of improving their somewhnt
rudimentary procedure. ‘

2. THE FUNDAMENTAL EQUATION IN THE THEORY OF
THE BOUNDARY LAYER

All of the folIowing investigations are restricted to
the case of 2-dimensional stationary motion. We
use a system of curvilinear coordinates. The lines
#=constant represent stream lines, so that the value
of the parameter # gives the amount of fluid flowing
through between the wall (4=0) and the particular
streamline corresponding to the value of # considered.
A system of curves perpendicular to the stream Iincs
will be called the n-curves; the length measured along
the +-curves may be denoted by .s, the curvature of
the stream lines by k+, that of the n-curves by k..

We introduce the following notation:

u is the magnitude of the velocity, the
direction of the velocity being given
by the direction of the stream lines,

y is the pressure.
us, u,~,7 are viscous stresses acting on sections

normal and parallel to tho stream
lines (as shown in fig. 1).

p is density of the fluid.
v is kinematic viscosity of the fluid= p/P.

Let us consider the equation of momentum applied
to the component of the momentum in the direction
of the stream lines:

In this equation b/bn denotes the differential quotient
along the n-curves, where the letter n is used for the
length measured along the n-curves.

Let us consider the components of the viscous stress
u~,Un,‘r. The normal stresses u, and u. are propor-
tional to the rate of extension of the volume element in
the s and n directions, the shearing stress is propor-
tional to the rate of shear. We write

‘=’(-2+k4
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Now the theory of the boundary layer is based on
two fundamental assumptions:

(a) that inside of the boundary layer the differ-
ential quotients perpendicular to the direction of

flow increase proportionally to ~, as the kinematic
6

viscosity v tends to zero, while the differential quo-
tients in the direction of the flow remain finite.

(L) that the curvature of the streamlines k+remains
finite if v*O.

According to these assumptions we can neglect the
terms containing u. and u= in comparison with the
terms containing 7-,we can neglect k~~in comparison

bu
with }~~ and finally we can replace ~byp ~n

Hence we obtain the relatively simple equation

Z)uzp() b%

2ii .2p‘+– ‘Vz’ (1)

In this equation p appears as variable both along
the stream lines and the n-curves. Following Prandtl’s
method, we should investigate the variation of p
in the direction perpendicular to the flow by con-
sidering the equation of momentum applied to the
component taken in that direction. According to
the assumptions (a) and (b), we easily obtain the
result that the variation of p perpendicular to the
streamlines is of the order of ~v. Hence in equation
(1) we replace p by its value p. corresponding to
n= w, i. e., outside of the boundary layer. In this
way p appears as a given function ofs.

We may now consider somewhat more exactly the
meaning of the two coordinates s and n used in equa-
tion (1). s was defined as the length measured along
the stream lines. However, it is obvious that with
the approximation used in this theory we can use s as
the length measured along the wall, and n the length
measured along the normal curves (perpendicular to
the stream lines) or along a straight line perpendicular
to the wall. The approximation used in the theory
does not permit of a discrimination between such
different definitions of the “cross section of the
boundary layer” (reference 2).

We therefore replace the coordinatess and n by two
parameters p and ~ chosen in the following way:

(a) Every boundary layer calculation starts from a
given” outside flow” in which the influence of viscosity
can be neglected, the influence of viscosity being
restricted to the boundary layer itself. The velocity
of the outside flow at the wall shall be given by U(s).
We introduce the parameter q by the relation

p=
J

‘U(s) ds, i.e. q is the line integral of the “outside

veloc~ty” along the wall. If the outside motion is a
potential motion, P is simply the value of the potential

along the wall. Obviously we have to write ~ = Z7~w.

(b) We replace n by the
aa

above and ‘Ite Fn= ‘~”

Let us calculate ~“

parameter # as defined

Hence we write equation (1) in the following form:

Now in the “outside flow” the Bernoulli equation

CL6 3 -
holds, so that — — +— = Oand we obtain:

“$69=”$’6)’

or taking into account the fact that U is
only of q and independent of #

a function

w=’)=v%w=)”
-w-u’We call the quantity ~ = z the “energy defect.”

It can be interpreted as the loss of energy of a fluid
particle of unit mass flowing along a particular stream
line as compared with the energy of a particle outside
of the boundary layer. Introducing z in the last
equation, we obtain

az u ZYz
&J=vv~ (2)

We notice that this equation is nearly identical with
the equation given by von Mises (reference 2). The
difference lies essentia~y in the use of the parameter
q instead of the lengths. It will be shown below that
this modification facilitates the practical use of the
equation.

First it is obvious that the use of q instead ofs does
not introduce any complication in the set-up of the
problem, because in most cases equally simple expres-

sions are available for the functional relations~= f (p)

and for U= g(s). Second, it is easy to give to equation
(2) the following interpretation: In the system p, ~,

‘w-u’
the energy defect z= ~ obeys an equation analo-

gous to the equation of heat conduction. The only
coefficient appearing in the equation is the quantity

v ~~ i.e., the kinematic viscosity reduced in the ratiou
~~ which is the ratio between the local velocity insideu
the boundary layer and the outside velocity at the same
cross section.
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ATeglectingfirst the influence of the “reduction fac-

tor” & i.e., replacing Y~ by V,we obtain a first approx-

imation for the solution of the fundamental equation
(2). Because the approximation is most accurate in

the outside portion of the boundary layer, where ~

is nearly equal to unity, we will refer to this solution
as the ‘Joutside solution” and denote it with Za. It
has the great advantage that it can be obtained by
using the well-known methods for integration of the
heat-conduction equation.

3. DIMENSIONLESS FORM FOR THE FUNDAMENTAL
EQUATION

Before proceeding to the calculation of this first
approximation, a dimensionless form will be given for

. the fundamental equation (2).
We introduce the following notation:

UOis a suitably chosen characteristic velocity
involved in the problem.

L is a suitably chosen characteristic length
involved in the problem.

‘J is the corresponding Reynolds Number.R=— v
Then Y*, @, u*, U*, z*, shall denote dimensionless

quantities defined by the following notation:

(3)

Substituting these values in equation (2), we obtati

?& 1 U* a2z*—. ———@* 4 U* 3+*2’

U*where ~ can be expressedby Z*in the following form:

u“
v= d l–g

For convenience, we omit the stars in the succeeding
analysis, so that the simple letters denote dimension-
less quantities. The same letters are therefore used
in the future in a different sense from that in which
they were used in the previous sections.

The final equations can now be mitten:

?)2 Iu a’z_=— —-
aq 4 us+’ (4)
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and
u

d
2Z—.u l–T’ (5)

It is necessary to indicate the boundary conditions
for the equation (4). Obviously the value Y= Ocorre-
sponds to the wall and Y= m to the transition to the

outside flow. Therefore, u= O, or z= $ = zo (say)

for Y= O and z= O for v= OJ. It is found convenient

in the future to use ZOand ~ interchangeably.

4. GENERAL EQUATIONS FOR THE FIRST
APPROXIMATION

(OUTSIDESOLUTION)

Let us consider the equation

azw 1 azzu—. ——
aq 4 ap (G)

which we obtain from (4) replacing -~ by 1, or neglect-

2Z.
ing ~ m (5) in comparison with 1, and writing z = zO,

This approximation cannot in general hold near the

wall, where ~z approaches the value 1. However, it

is not without interest to discuss this simple approxi-
mate solution, which we shall later use for the outside
part of the boundary layer.

Considering z as “temperature”, and replacing p by
the time t, # by a reduced length-coordinate z, the
following analogous heat-conduction problem can be
formulated: The temperature at the end point x= O
of a bar of infinite length is a given function of the
time t beginning at t= O. At infinite distance (z= co)
the temperate is equal to zero. The temperature
distribution as a function of time and distance from
z= Ois to be computed.

For either heat conduction or boundary layer state-
ment of the problem, we have to find the solution of
(6), which satisfies the boundary conditions ZU= O

‘2(P) for #= O. This solutionfor #=aJ and z~=zo=~

is given by the definite integral

which is given in any text on the theory of heat conduc-
tion. Hence with this approximation the velocity
distribution in the boundary layer can be computed by
quadrature, as U2 is a given function of the outside
potential ~.

It is interesting that a relatively simple explicit
condition can be found for the location of the separrt-
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tion point. Separation occurs if the slope of the
velocity at the wall changes sign. Thus the condition

for separation can be written in the form ~= O for

@= O. We obtain by differentiation

I’or 4= O the second term vanishes, and the first
term becomes indeterminate, but its” value
determined by a partial integration. In this
obtain

can be
way we

Thus the separation criterion is given as p= q.
where

(8)

Assuming P= O as stagnation point (U= O) and
assuming positive values for U, we easily see that

dU
separation can only occur after ~ changes sign, i.e.,

after the velocity U has reached a maximum value
and is decreasing.

We will find later that this separation condition is
not of great practical value, because as we approach
the separation point, the approximate solution becomes
very inexact near the wall.

5. THE VELOCITY PROFILE AND DIFFERENTIAL
EQUATION IN TERMS OF U=’U (x, V)

The differential equation (6) determines the energy

defect z=~ -as function of the parameters p

and ~. For many applications, expressions for the
velocity profile are needed, i.e., one has to determine
the velocity u as function of the coordinates z md y,
where z is the distance of an arbitrary cross section
from the starting point of the boundary layer, and y
is the distance from the wall. Instead of, the real
lengths z and y, dimensionless quantities Z* and y*
may be defined in terms of the characteristic length L,
putting

I’or convenience we use the letters z and y instead of
the letters X* and y*, as we did above for the other
quantities involved in this investigation. Then it is
obvious from the definitions given in equation (3)
that u, z, y can be expressed by the formulas:

.—

d
U=.JT=Z=Z7 1.L

20
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(9)

These formulas enable us to calculate the velocity
profiles corresponding to any given solution z(p, @.

It is interesting to transform the approximate equa-
tion (6) into an equation for u, containing z and y as
independent variables. Obviously the symbol b/bQ

means in this case the rate of change of any quantity
with increasing x while keeping constant y, while bJ@
means differentiation by keeping Y invariable. There-
fore

b 1 ~+dy b
A

—.—
)

.—
alfl bX dx by’

dy .
where ~ 1s the inclination of the line *= constant in

the x, y coordinate

be expressed by

system. The inclination ~ can

where v is the (dimensionless) velocity in the y direc-
tion. We obtain in this way

On the other hand,

%%(%=%%3==%
(from (9)).

The equation (6) is therefore transformed into

Calling the dimensional quantities M, vI, Ul, q,
and yl for the moment, we obtain

Comparing equation (10) with the ‘(exact” bound~
layer equation deduced first by L. Prandtl:

we notice that equation (10) exaggerates the influence
of the term cor~esponding to the viscous friction,
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a%lmultiplying the term v ‘. We~ with the ratio ;

especially notice that for ~= O, i.e., at the wall, u= O
u W’u

and so — ~ can only have finite value if ~= 0“u ay ay
Hence the solution of equation (6), called in this paper
the ‘1outer solution ‘>, is composed of velocity profiles

with vanishing second differential quotients ~ at the

wall. This is the reason that it cannot be expected
that S shape velocity profiles, such as occur in a flow
against increasing pressure before separation, will be
satisfactorily represented by the solution of the
approximate equation (6).

6. POWER SERIESEXPANSIONOF U2(P) .

The analytical evaluation of the integral in (7) for
an arbitrary function U2(P) is in general di.flicult, if
not impossible. Numerical or graphical methods are
likewise of little use. We therefore adopt the pro-
cedure of approximating to the function U2(Y) by a
polynomial of the form

u2(p)=~obiq’ (12)

With suck a function the indicated integrations can be
analytically carried out. In proceeding with the cal-
culations to this end, it is convenient first to transform

COMMI’ITEE FOR AERONAUTICS

the expression for z@ in (7) by
variable of integration defined by

@=&

A little calculation gives at once

introducing a new

Z@=*Ji”’-’*(’$)d$)d’ “3)
z

or introducing the particular function U2given in (12):

Expanding the term in parenthesis by the binomial
theorem and integrating term by term, we obtnin:

where

J,(x) = ~=”e~d~, and 0:=1.

By repeated partial integrations J, where r is any in-
teger greater than zero, may be expressed in terms of
Jo. Carrying out the partial integrations and col-
lecting terms, we obtain, finally:

I
where

go(z) –Jo@
2

g, (x)= - &e-&+~sJo (x) (14)

(r–l)/ (–)’

[
— xc-z’~~(–)’22’~’ ‘~~~~~~~ !

“ ‘Z)’>’= (2r– 1)1 & I
d~ + 22@-lJ=1 xe-z2Z2(’-I)+ JO(Z)X2’

& }1
JO(z)=l–~~e-~2d& and O!=l.

& /

The universal functions g,(z) can very readily be
calculated using the standard tables of the probability F($o,)=522i-&: ;;; b#:-1 = o (15)~=1
integral appea~ing in Jo(x). Once detern&ed they
are independent of the velocity function U(P), pro-
vided only that the latter has the polynomial form
(12). Equation (14) therefore, in connection with
(9), gives the complete analytical solution for our
first approximation to the boundary layer problem
for any case in which the potential velocity is such
that Ut may be expressed as a polynomial in V.

Substituting (12) in the separation criterion (8),
integrating term by term, and again applying succes-
sive partial integrations, it is very easy to show that
the separation criterion takes the form, where q. is the
value of q at the separation point:

Hence the determination of the separation point is
reduced to the solution of an algebraic equation with
given numerical coefficients.

7. DOUBLE POWER SERIES EXPANSION OF U2 (p)

In principle we can approximate with any desired
exactness to any practically important velocity func-
tion U2(@) by a polynomial of the form (12). II’or
many important cases, however, such as, for example,
the potential velocity around an airfoil, the number of
terms required in the polynomial for a satisfactory
approximation becomes very large. Since tho cx-
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pression for z@ becomes rapidly more and more com-
plicated as the number of terms in the polynomial
increases, it follows that the solution of our problem
becomes very laborious and complex in such cases.
I?or this reason a solution has been investigated for the
case in which ?Y(q) is approximated by two distinct
polynomials of the form (12) instead of by one. This
solution, which is discussed in the present section, is
somewhat more complicated formally than is (14), but
is vastly simpler for carrying out actual calculations.

We approximate to U2(9) by two polynomials, one
of which we use for q< ql and one for @ pl, where pl
is any tied value of ~, i.e.:

‘U2(ff)=jl(ff) = ~ObtPffor p<pl I (16)
U*(9) =f2(p) = ~opid for &w

The procedure is indicated schematically in figure 2, in
which the solid line represents the U2(q) actually used.

We substitute (16) in the original integral for Zu,
change the variable of integration, expand, integrate
term by term, and perform successive partial integra-
tions just m in the analysis leading to (14). The
final result may be written in the form:

Z@(p, +) =2b —zb*+ z~*(q>pl)
where

z~= 20 of formula (14)

()“’*= bogo&
()+&,&;),#l, —

“ “ & “-’(q- “)’

(17)

Zfl$ is identical with Zb* except bf*& ~d n-m.
O!= 1 and g,(z) is as given in equation (14). If q<pl
we use the simpler formula (14).
Proceecling as before, the separation criterion no-iv
takes the form

(18)
~~r-lplt–r = ()

()!= 1, the second sum is to be taken to the
larger of n or m, and &=O for i>n, p,=O for {>m. I

For many practically important casesit is sufficiently
nccurate to approximate to U2(W)by two power series
involving no terms of degree higher than 3 in P, i.e.,
b,= b,=-. -------- =_, =0,=. _--_. ----=O. Insuch
crisesthe formula (17) can be written in the following
iorm, which is very convenient for purposes of
calculation:

z.(y), *) = {bo(ho—h“*)+ /3”h”*+ ‘ylrflgl*

– -f2d92* + 7391393* }

+P{bl(hl–hi*) + f?lhl*+272Pl(gl*
+g,*)–373p?(g2* +g3*)}

+q2{bz(&– L*) + /%h.z*+3Ya$01~I*
+ 2g**+g3*) }

+q3{ba(hs-~*) + B3L3*} (for q>q,)
where

Yi=h-–i%, gt=gi (%)’9,”=479’
h=90, h=go+gl, L2=90+291+g2, h=go+3gl

+3g2+g8, hO*=go*, hl*=go*+gl*, etc.
If ~<pl put /31=g,*=hi*=0

(19)

Before proceeding with the general case, it is inter-
esting to compare this approximation with the exact

u’

& (P)___- ——-—.

.fff”

I

>
q P-

FIGUBE 2.—Double power series representation of W (p).

solution given by Blasius for uniform external flow
along a flat plate.

8. APPLICATION TO BLASIUS’ CASE U= constant

For this simple case, we have in accordance with (16)

U2=bOjbl=b2= . . . . . . ; . . =&= O,ql=CO

Hence from (19) and (14)

If we take U= Uo=the characteristic velocity used
in defining the Reynolds Number, then U has the
numerical value 1, i.e.:

For convenience, we denote the probability integral
by P, i.e.:

P(z) =$1 e-~2dp
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Then from the basic equations (9), -we have for the
dimensionless velocity and distance from the wall

We arbitrarily defie the boundary layer thickness 6
as that value of y at which the velocity has 99.5 percent
of the value which it has in the outside potential flow,
i.e.,

Y=8-U=O.995 “ (21)

From the tables of the probability integral P, we find

that this occurs for 4 = 1.8.
-&

Hence

1.!?

Oseep
/.0

Blosius..-e<~--
, ----

.8 -/ //A
u

,
/’

.6 –

/“

/
1 - .--Firsfopproximofion

/*

I I I I I I 1
0 I 2 3 4 5 6 7

fiG~E 3.—Dfmeusionfess velocity profiks for flow along a tlat plate.

The evaluation of the integral in (2o) has been carried

out analytically for 0< ~ < 0.1 using the standard
&

power series expansion:

lqz)=;r(z–:+~+”.....)”

For 4 ~ 0.1 the integration has been accomplished
&

graphically with a Coradi integraph. Before present-
ing the results it will be convenient to introduce the
distance along the plate in a direction parallel to U
and measured from the leading edge, which is also
taken as the origin of p. In order to fi ideas, we
consider a plate whose total length in the direction
of U is taken as the characteristic length L which
occurs in the Reynolds Number. Then in order to
make our distance along the plate a dimensionless
variable, we divide it by L. This dimensionless dis-
tance we denote by x in accordance with customary
practice, so that O<x~ 1. For the present case

Y= Ux=x since U=l. Hence p may be replacecl
throughout by z.

The results for u= u(y) are given in figure 3 by tho
curve labeled’ “fist approximation”. The Blasius
proiile is also plotted for comparison. The expression

5.53
for 6 from this fist approximation is 6= —~ fit

. 5.5
whalethe usual Blasms VahIe1sISBlaslti,q= —~~ &

Here the dimensionless length ~ is, of course, also
defined in terms of the standard length L. The shear-

()au
ing stress at the wall TO,as obtmined from ~ ~0,,hM

the following expressions:

It has been pointed out above that our first approxi-
mation corresponds to an exaggeration of the viscous
forces near the wall. The method of linearizing the
dif?ierentialequation introduced by Oseen retains the
exact viscous terms but approximates to the inertim
terms. It is of some interest, therefore, to compare
the results given by the two methods. This is especi-
ally easy for the present case of flow without pressuro
drop, since the Oseen method leads to an equation of
exactly the same nature as does our first appro.uma-
tion. The Oseen solution has, therefore, been worked
out and will be briefly discussed here.l

We start with the dimensionless form of the l?randtl
equation which, for U=constant, becomes (cf. equa-
tion (11)):

au &L_ a%
‘Fx+v7y– Vy’”

We then introduce the velocity defect us defined by:

Substituting this in the Prandtl equation, the Oseen
method of linearizing is based on the neglect of all
second-degree terms in % or v. Carrying out this
procedure, we obtain

i.e., a heat-conduction equation of exactly the type as
was deduced for our first approximation (6). The
boundary conditions are: %= U= 1 at y= Oand%= O
at y= w. The solution corresponding to these bound-
ary conditions is obtainable at once in terms of tlm
probability integral as

“=1-”’(%)
or in terms of the original variable u (since U= 1)

1After the present paper was completed, the authors discovered tlmt tho Osceu
method results presented in the remaiuder of this section hod bcou investigfltod
from a point of view rather ditTerentfrom theirs rrndpresented in a pnpor by N. A.
V. Pkcy and H. F.WirmY” Tho Skiu Friction of Flat PJatas to Osoen’s Approx
imation”, Proc. Roy. Sot. Lend., Series A, Volume 140 (lfJ33), P. 643.
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This velocity profile has also been plotted in figure 3
and la,beled “ Oseen.” The boundary-layer thickness
defined as above is given by

4.0 _’
c?os.m=~ -JX1

while the velocity gradient at the wall can readily be
shown to be just twice that given by our fist approxi-
mation, so that

Comparing all of these results, we see that our fist
mpprosinmtion gives excellent agreement with the
Blasius exact solution as far as 8 is concerned, and a
fairly satisfactory agreement with respect to velocity
profile and wall shearing stress. The Oseen method
of linearizing the differential equation leads, in the
present case, to much greater errors in all of these
characteristics.

9. FURTHERAPPROXIMATIONTO THE OUTER
SOLUTION

In order to improve the accuracy of our solution, it
is natural to look for some method of successive approx-
imation or iteration starting with the first approximate
solution discussed above. Von Mises (reference 2)
has suggested a method based essentially on successive
iterations in the q direction. If we use subscripts 1
to denote our first approximation and subscripts 2 for
a second approximation, then in view of the form of
the exact equations (4), (5), von Mises suggests
essentially that we write

This procedwe has been investigated for the Blasius
case and found to lead to inconsistencies with the
given boundary conditions of the problem. The diffi-
culties seemed to be basic ones, so that this method of
approximation was abandoned and the following alter-
native procedure was considered:

The exact differential equation may be written in

Then the first approximation is obtained by neglect-
ing the right side of the equation, i.e.:

The following second approximation immediately
suggestsitself:

.

ix!. 1 ?)222 1 a%”—-—.
bq 4 ~=z ap–w’ )l–~- 1 =fl(~, Y), say.

rhen Z2 is the solution of a generalized, nonhomo-
geneous,heat-conduction equation, in which the right
~idefl, is a given function of p, #. From any standard
work on mathematical analysisl), the formal solution
]f this equation satisfying the given bounda~ con-
litione can readily be found to be

–-] fl (E,n)—e
dY–t

Unfortunately, the authors have found the evalua-
tion of this integral form of solution too intractable
for the method to be useful for the case of any general
function U(p). Only in the Blasius case, where a
~eparation of variables is possible so that the partial
differential equation reduces to an ordinary ditleren-

tial equation with independent variable ~,
&

has a

solution of this second approximation been calculated.
Since the method is not pursued further in the present
paper, the analysis leading to this solution is not
presented. The velocity profile so deduced is, how-
ever, included in figure 3, with the label “second
%pproximakion”. The approximation to the exact
solution is seen to be quite good.

In spite of this initial success the entire method of
successive approximations was abandoned for the rea-
sons mentioned above. It appears, however, that it
might furnish an interesting and perhaps profitable
field of study for the mathematician.

10. THE INNER SOLUTION

It has already been pointed out that the approximate
form of the boundary-layer equation which leads to the
outer solution discussed above is exact at the outer
edge of the boundary layer, but is in general far from
correct at the wall. A natural procedure is therefore
to look for another approximation to the exact equa-
tion which shall be correct. at the wall but possibly
inaccurate far from the wall. The solution of this
equation might naturally be called the “inner solu-
tion”, and the final method of approximating to the
exact and complete problem would then be to join the
outer and inner solutions together in some way.

A first approximation to this inner solution is very
easily obtained, but it is convenient to first change the
notation slightly insetting up the equation. We intro-
duce a new independent variable defined by

~= ZO–z=$ where zO=~. (22)

Then the basic differential equation (4) may be written
in the form

1 cf. for example. Goursat?s” Cours d’Analyse III, ” ch. XXIX.

(23)
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Using a subscript ( ), to denote the inner solution, we
approximate to (23) by writing

(24)
A(q) = –4zo’& J

()

~~ *

‘vllere T@ is a function of q, ~, ~i chosen in such a

way that (24) approaches (23) as the distance from the
wall goes to zero, i.e., m $40.

Since at the wall we have ~= $= O,it appears that

to get a iirst approximation for our inner solution we

()

~{ *
may take Fy = O. This solution, denoted by ~il will

then be exact at the wall. Discussing this simple
&pproximation,we have

(25)

We consider this as an ordinary differential equation
and integrate for p= constant. It is convenient to
introduce temporarily the auxiliary dependent variable

w=%’
()

, and to consider {i, as independent variable.

Then we obtain at once

ldW A

~==K’
or integrating,

W(~il)– W(O) = 4A1fi .
Now writing

2

()au ~B?(q) = ~(o)= ($$-)+=0-@fj=o

and returning to the original variables ~iland +,

ari,
~= [B:+4A&JIIz.

A little calculation gives finally, assuming
~i,(*= o)=0.

+=&~B?– (B,2– 2A&)~B~~. (26)

If B,# O, we may invert this expression obtaining the
following expansion about ~= O:

&=B@+:&@/~+ . . . . . (B,#O). (27)

()
At the separation point ~ ,=0= O and hence B,’

= O. We have exactly, therefore:
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1}
+=L 31’4 or

34 “1 At sepa~:tio: point: (2s)

()
3 413A213+413

.

If,= ~

The different analytical form for .t~l,at and away
from the separation point for $*O is very interesting,
In view of the exactness of the equation for r{l, at
4= O, any further approximations for {, must exhibit
the same behavior near x= O as is shown in (27) and
(28).

11. THE IIMPROVED INNER SOLUTION AND ITS
JOINING TO THE OUTER SOLUTION

In developing further approximations to the inner
solution, we must be guided by the procedure which
will be used in joining the two solutions together, A
discussion of this procedure requires fist a brief re-
considering of the approximate outer solution. The
exact and approximate outer equations are, respec-
tively:

The two equations are identical at the outer edge of
the boundary layer where z= O and would at first
glance appear to become more and more different as
the wall is approached, since z in general i.ncre~ses
continuously from Oto 2.. Fortunately, however, the

two equations are again identical when ~= O, i.e.,

at an inflection point of any z(t) profile. For tho
Blasius case of no pressure drop this infection point
occurs just at the wall. l?or external flows with pres-
sure drop in the direction of U it is almost certain
that there is no inflection point at all. l?or flows with
pressure increase in going downstream the inflection
point moves out from the wall so that the z(#) profiles
develop an S-shape. In view of the nature of the
two equations, it therefore appears that the outer
solution furnishes, in most cases, a satisfactory ap-
proximation to the exact solution for the region be-
tween the outer edge of the boundary layer and the
inflection points of the z(+) profiles. Proceeding from
these inflection points to the wall the accuracy of the
outer solution apparently becomes rapidly more and
more unsatisfactory. The procedure adopted in view
of this situation is the following: For flows with pres-
sure decrease or constant pressure the outer solution
is considered as a satisfactory approximation to tho
exact solution. l?or flows with pressure iucrense tho
outer solution is used from the outside of the boundary
layer to the curve connecting the inflection poiuts of
the outer solution z~(x) profiles. For the region be-
tween this curve and the wall the partial differential
equation is replaced by a famiIy of ordinary differ-
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entifd equations in *. The inner solution is composed
of the functions r~(+) obtained by the solution of
these equations and joined to the appropriate ~w(~)
profile of the outer solution for each value of q. In
the following discussion of the inner solution and its
joining to the outer solution, we are therefore con-
sidering only flows with pressure increase in the direc-
tion of the external flow.

In joining the two solutions it seems necessary to
a2~

require that - be continuous, in view of the major
?)$’

importance of this second derivative in the equations.
We must, therefore, join the two solutions in such a
wwy that the inflection points of the outer solution
coincide with inflection points of the inner solution.
Referring to equation (25), we see that for a given

h2ti,
value of q, @ has always the same sign for all

values of y. In other words, the fist approximate
inner solution has no inflection points and is, therefore,
quite uselessfor our present purpose. Some 15 dii?ier-
cnt procedures for finding a satisfactory inner solu-
tion and joining it to the outer one were investigated
in all, the more important of which will be briefly
discussed below.

It is convenient to call the point at which the inner
and outer solutions are joined the “joining point” and
to use a subscript j to denote quantities taken at this
point. It is also convenient to introduce an alterna-

tive independent variable ~=& and to consider j-
&

and z sometimes as functions of q and Erather than
of p and t. The variable ~ appears continually
throughout the entire analysis and seems to be a natural
physical variable of the boundary-layer problem. Its

close relationship to the variable ~ which gives
&

the Blasius similarity law is quite evident. It should
be noted that inflection points in the f, ~ plane
correspond identically to inflection points in the ~, ~
plane, so that our preceding discussion is valid in
either plane.

The first procedure investigated was an iteration one,
a{ *

i.e.,
()&

was taken from the first approximation

bri’ This had the effect of moving the inflectionas ~“
point in from infinity, but in the cases considered still
gave .?fi>zO,i.e., the inflection point still lay outside
of the boundary layer. This method was, therefore,
abandoned and in all the succeeding investigations
the inflection or joining point was forced to occur in
the neighborhood of the wall through the choice of

()
a~ *-

()
a~*.

&“ ‘t ‘he ‘vail ‘Ve‘Ust ‘ave TV =0 ‘mce. . .
~(*=0) =0 for all

591—35—36

. .
~’s, while at the joining point we

()lz)~*see from equation (24) that ~ — =1. Hence
h~ j

()

q- *

a series of simple assumptions for
& which sat-

isfied these two conditions was discussed. The various
attempts will be more clear if we restate the immediate
problem of the inner solution a little more explicitly.
We have a second order diilerential equation (24) for
~i M function of ~ (or 0, p being considered constant.
We should like to impose the following boundary con-
ditions on the solution of this equatio~:

At the wall, 1#=0, {,=0.
At the joining point, #=$,

from the outer solution).
(determined

()
al *

In addition, we must choose ~ so that at the joining

a’{,
()

point ~ , = O. We have here three boundary condi-

tions for a second-order differential equation and must,
therefore, abandon one. The condition at the wall is
of essential importance, especially for the separation
phenomenon, and must be retained. Of the three re-
maining possibilities two have been discussed. First,
the condition ~~i= ~~j was abandoned. Second, the
joining point was considered to be determined by the
condition that -tff= ~~j and the value of #fj was not
required to be the same as that for the outer solution,
i.e., in general, jij# $.,. The discarding of the condi-

()
tion on ‘*a+ ,

was not considered, largely because the

second method was felt to give satisfactory results.

()

~~ *
When the fist method was used ~ was assumed to

()la~* #---to be given by ~ X9 = ~ For the second method

(.)
a~ *

two assumptions with regard to ~ were consid-

the more natural, but it unfortunately leads to the
appearance of elliptic integrals which make the suc-
ceeding calculations very awkward. The second is very
fortunate in that the inner solution is readily obtained
in explicit form and involving ‘only elementary func-
tions.

In order to discuss these vafious alternatives a fam-
ily of simple external flows of the form U*= bO+ h, y
was used. Inaccuracies in the diilerent procedures
would be expected to reveal themselves most strikingly
at the separation point. Accordingly, the separation
point location and the ‘corresponding ‘velocity profile
were calculated for all three of the cases mentioned in
the preceding paragraph, and all three procedures were
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found to give very similar results. The calculation of
separation point locations followed methods analogous
to that described in the next section. In view of this
lack of sensitivity of the separation point character-
istics to variations in the method of joining, the second
assumption of the second method was adopted, i.e.

Before giving the analysis and results for this pro-
cedure we shall briefly outline the essential elements of
the method finally adopted. For a given value of p

()3{.
we determine ~tij, 7+ j and & from the outer solu-

/

-——
/

I
I

1“’+~kiginforf= :.6 z
~efl - ‘1 Z {i

FIGURE 4.—Method of joining inner and enter solntions to obtaii the complete
joined solution.

()

w~u
tion, using the condition ~ , = O. We then assume

$’(%)=J: “-and determine the inner solution

using the boundary conditions

We then determine Y,j corresponding to ~j and definea

quantity e by the relation

Xii= 4.,+ ~ ~(~) or &j=&+ ~.

For f<f, we use the inner solution as a function of
q and ~f. For ~>~, we use the outer solution, but for
a given value of f. we use, not & or #~ but & + ~ or
#~+ efi. Our final approximate solution then has
the form indicated schematically in figure 4 by the
solid line. This procedure implies that the outer
solution is one which does not correspond to the
actual wall but to a fictitious one displaced out into
the fluid by an amount determined by c. This dis-
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placement is a function of the distance downstream
from the stagnation point, and in general, has its
largest value at the separation point. The error
introduced through the use of this displaced outer
solution will naturally depend on the relative size of e,
increasing as Eincreases. In the 13 velocity profiles
U’(p) which have been investigated using this proce-
dure the value of g~ (corresponding to the boundmy-
layer thickness) at the separation point always lay
between 1.5 and 2.0 while the largest value of e was
0.026. Hence the displacement was at most of the
order of 1.5 percent of the width of the boundary-
layer profile. It is, therefore, believed that the error
introduced by the displacement of the origiu of the
outer solution is of negligible importance. In this
connection one further procedure which was investi-
gated should be mentioned. In this a slightly altered
value of ZOwas taken for the outer solution and the
alteration was taken to be such that evanished.’ This
implies that a solution was obtained for a slightly
distorted external potential flow, but the solution was
logically consistent. The results with this method
were practically indistinguishable from those obtained
with the c procedure, so that this more complex
method was not carried further.

12. ANALYSIS AND GENERAL RESULTS FOR THE FINAL
JOINED SOLUTION

We first derive the expression for the inner solution

F9”=lp‘qua-
fimdly used. Substituting $ ~P

tion (24), we have

Integrating in the same manner as before, we obtain:

where, as before,

()
B,2= %$ 2

a+ #.~

Integrating once again and introducing the bound-
ary condition ~f(~ = O)= O, we have

/:- -

It is convenient to rewrite these expressions in terms
of the variable E. Replacing A by its original expres-
sion from (24) a little calculation gives for the final
inner solution expressions:
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$i=+j~z-(y’’[i?-dw:
L]1- ;

+ ~i’-1_L _
J1 +Bz ‘in-’m

$=’+%Y’4d=iin
(29)

(30)

We obtain the folIowing expressions, giving the inner
solution joining-point characteristics, by putting ~i= ~~

(31)

To

we

join to the outer solution for any given value of p,

la, “()&
frost determine .$0,~ ~and -b$’ ,from the outer

()32G

solution (17) or (19) using the relation —bt? j

‘(%),=(%),=0 ‘ethenre’tie(:),=($)

.:,($);=($, The second equation of (31)

then determines B and this, with the preceding equa-
tion, gives .&,. Finally, we obtain c from

6= L,-–Z., (32)

We now have the complete and joined outer and inner
solutions for a given q. The analysis may then be
repeated for as many values of q as are desired. The
fact that the inner solution is given in the form 5= $(1-,),
and that inversion to ~f($) is very difficult, is of no
practical importance, since what we finally want is the
velocity profile u= u(y) for an arbitrary value of z, i.e.,
of p. For considering only the inner solution for the
moment, we may write the basic relations (9) in the

For a given p, ~, is given implicitly as a function of “C

in (29). Transforming the integral in 1:, so that ~ is

the variable of integration, the quadrature can be
analytically carried out and we readily obtain

This equation is easily inverted, so that, using the
preceding expressions, we obtain -&=f (y) or u,= f (y)
explicitly, as has been done in (33) below.

In collecting the most important expressions for the
Enal, complete solution, it is desirable to include the
expression for the so-called “boundary-layer Reynolds
Number” R*. If U, is the actual (dimensional)
potential velocity just outside of the boundary layer,

A

/

/

Z. - -/——— —________ ___ _

I
1

f.
I
1

I // i

FIGURE5.—AItemative picture of the method of joining tier and outer selutions.

and & is the corresponding actual boundary-layer
thickness, then R~is deiined by

In presenting the final results it is also convenient to
use a slightly different picture from that discussed in
connection with figure 4. For conceptual purposes
the dkplaced origin for the outer solution seems most
suitable to the authors, since it gives a continuous final
solution in the ~(~) or f(~) plane. The notation for
the corresponding expressions giving results’ in the
u(y) plane is, however, a little complicated. The
alternative picture indicated in figure 5 gives identical
results to that of figure 4 but leads to simpler expres-
sions for u and y. In figtie 5 we have made the
origins for tt and t- coincide so that we have only one
g variable instead of the two used formerly (& and
$.). At the joining point t,, there is now a discon-
tinuity of magnitude e between the values of g for the
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inner and outer solutions (.$i~—~~j= C). The complete
solution is obtained by following the inner solution
curve from the origin to ~j and the outer from ~j to zO.
(cf. the solid curve.) The solution u(y) is then con-
tinuous although ~(~) is discontinuous, as is clear from
the formulas given just below.

The essential results of the entire foregoing analysis
may be summarized as follows: For any given value
of p between the stagnation point origin and the
separation point:

y=6, i.e., y“ =6* for t=gs where

~(~=t,) = 0.99

d–
R~=@ ~,S*

At the separation point, B = O,we have the following
simplifications:

It will be noticed that the boundar@a~er thickness
y= ~has been defied in accordance ‘tith (21) as that

value of y for which $=0.99, i.e., ~=0.995. This

numerical value was chosen because of the excellent
~greement it gave with the Blasiusexpression for c?in

the case of flow with constant pressure. It will also
be noticed that the final formulation given above
completely eliminates the necessity of calculating
&,jor ●.

Before leaving this general analysis of the boundary-
layer problem, the method of determiningg the separa-
tion point should be indicated. It would, of course,
be possible to determine the value of y. giving this
point by trial and error, using the procedure already
outlined in this section, until a value of P was found

.
()

au 2for ~hch B2= ~Y ~=o= O. The problem can, how-
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wer, be much more easily solved directly by the follow-
ing method. Since B’= O,we have from (31) for tho
separation point:

I?rom the outside solution, using the condition that

(–)b’z.
7X’ *

= O,we obtain

(:)j=fl(~)($)j=’’(~),

where f] and fz are known functions of q. W6 now
employ the conditions:

which, substituted into the second equation of (34), give

r ~= ft(p), where fs is also a known function of p.z“
.“

But % and %’ are also given functions of p. We there-
fore have an equation containing only p whose solution
obviously gives q., i.e., the value of q at the separation
point. In other words, we determine the separation
point position q, by solving an equation of the form

F(Ps) = O.

The procedure is entirely similar to that discussed
earlier in connection with the use of the unmodified
outer solution alone. The calculation of the velocity
profle, etc., is carried out in exactly the same manner
as was described above in this section for an arbitra~y
value of p.

13. APPLICATION TO THE BOUNDARY LAYER FOR A
“ SINGLE-ROOF PROFILE “

la this section we consider the application of tho
above analysis to the simplest case of external flow with
pressure increase given by U’= BO+ 131p. We call this
U’(q) profile a “single-roof profile” for obvious reasons.
For any actual flow around a solid body we ham an
upstream stagnation point, i.e., U’= O at p= O. In
order to give our single-roof profile any physical sig-
nificance we must, therefore, consider it as a,limiting
case of a “double-roof profile” defined by

U2= blqYfor O=q=ql
U’= /3.+ /i?lPfor wZP1.

The limiting single-roof profile is obtained by letting
Pl~O, 61~oY, while blql= U1’. (cf. fig. 6.) The final
velocity proii.lemay then be written:
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V=u?–flp,

and may be considered as a first and crude approxima-
tion to the flow over the upper surface of an airfoil.
To fix ideas we consider this velocity proiile as such
an approximation. At the trailing edge of an airfoil
the velocity has very nearly the value of the undis-
turbed velocity far from the airfoil. If this be taken
as the basic velocity used in defining the Reynolds
Number of the problem, then -wemay take U (trailing
edge) = 1 in accordance with (3). Once again to fix
idertswe may consider our airfoil only in the normal
range of angles of attack, so that the position of the
forward stagnation point varies very little and may
be assumed to remain fixed. If we then take the
distance along the upper surface from stagnation point

Double roof piofile
. .

-+—
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\

\

\
t’

\
Single”
roof pro file \
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FIGUBE&-The single-roofpotential velocity protife as the ltiltiig ease of a double-
roof protlle.

to trailing edge as the characteristic length of the
problem, the dimensionless coordinate z along the
surface will have values between zero at the stagnation
point and unity at the trailing edge. From the rela-
tion between z and p given in (9), it is then very simple
to deduce the function U(Z) from W(9). The two
alternative expressions giving U are fiually

1

2%0=ZP= u12–2(ul–l)q
u = u, – (u,– l)Z

(35)

The corresponding profiles are plotted in figure 7.
In obtaining the outer solution it appears that the

results are identical whether we substitute (35) directly
into (14) or use the double-roof profile with (17) and
then pass to the limit ql~O. In either case, we obtain:

2.= Ulzgf)(t)–2(U1– l) be($) +91(E)IP
= U?g,(g)–2(-U, – I)h,(g)p

(36)

For the separation criterion, on the other hand, we
must use the double-roof profile and the limiting proc-
ess. If we carry this out using (18), we easily get

u?
9S”=4(U1–1) (37)

where the subscript w is used to indicate the fact that
the value of p, is obtained from the separation criterion
Uf U’f

L_\.
G’

a Trailing Trailing

I ------------
edge edge

1 ----------------------- Jx-’

ix 1 ~p
2

FIGURE7.—The ftnal siugle-roofprolile as function ofz aud q.

for the outer solution only. The functions go(~),gl($),
and hl(g) are plotted in figure 8.

To carry out the joining procedure with the inner
r.solution, we need --0= 1—~~ and in the expression for

!!&
.5 L I 2.0 2

FIG~E 8.—The rrniversaf functions go; 01, and h,.

this quantity it appears convenient to replace y or Uz
by a new variable denoting position along the surface.
We, therefore, write
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and obtain at once from (35) and (36)

(39)k 1–2h,(g +2 Cx91(t)

?lmmthecon~ion~ ~~z (~= ik) = 0, we get a= ~(EUj).

Since ~~jis always small, the easiest method which has
been discovered for carrying out this calculation in
general is to expand the functions gt(g) as power series
about ~= O, using the expansion for the probability
integral given in section 8. In the present case it was
found possible to neglect terms of degree higher than

5 in t in the expression for $, and this is probably also

true in generaL Having a= a(&j) , it is easy to cal-

Cdate(%)jand(%),fiom‘3’)‘fmctiOnsOf’oi-
Turning now to the inner solution, so as to determine

the separation point, we obtain from (35) and (38):

(40)

so that (34) becomes

(*),=2W3-(9’
NOWreplacing

(2)’b’@:
as obtained in the last

()

@

paragraph, we have -$’ j= f (g~j)) since a= a(g~j).

T4$i($)j=FI(&j) (say), which may be

calculated and plotted. In accordance with the con-
siderations presented at the end of the preceding sec-
tion, the value of t-j for which Fl (~~i)vanishes, is that
corresponding to the separation point. The separa-

tion point values of a and ~ are given by this value of

.&i.(tii)s,Sthen deterfied us~g (34)~d G from (32).
The numerical values obtained in this way for the
c’s~gle roof” profile are:

a,= 1.241,@,=0.246, (&j)8=0.262, c.=0.026 (41)

To get a picture of .-thecomplete boundary-layer be-
havior, we must consider other values of a between 1
and 1.241, corresponding to points along the surface
between the stagnation and separation points. For
such intermediate points the procedure is the following:
We assume a detite value of a and this, in view of
the calculations outlined above, immediately gives
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@&, and()~h
& ,. Substituting the last two into

the second - efiression of (31), remembering that

($i=(a-’’bta~~2‘thoughthoyar-,. . -,-
not needed for the determination of boundaly-layw
velocity profiles, we could then calculate ~ij and hence
c from the first equation of (31).

The final velocity profles for any of the values of a
considered are now determined from (33) or (33a).
The integral occurring in these expressionswill usually
have to be evaluated by an integraph or some other
graphical or tabular means. The complete calcula-
tions have been carried out for a series of three values
of a. In order to visualize the results and to present
them in a form independent of the magnitude of ?Y1,

they are given in terms of=&) y*, and z* where

U1 ‘1–1 1–1 (42)
%“q’y

*=y$R4~, z*=z~=
&

The velocity profiles and boundary-layer thickness in
terms of these variables are indicated in figure 9 by the
solid curves. The joining points are shown by tbe oval ,
symbols with the j. It is very interesting that in tho
u, y diagram the inner solution is so large a fraction of
the complete solution, while in a j-, .$plane the outer
solution goes nearly to the wall. It is just the small
values of g at the joining point which make it seem that
the approximation of our joined solution to an exact
solution of the boundary-layer equations is satisfactory.

For the sake of comparison the analogous calculations
have also been carqiedout using the outer solution only.
The results are given by the dashed curves in figure 9.
At the separation point as determined from the outer
solution (cf. equation (37) the boundary-layer thick-

ness becomes logarithmically infinite since & is pro-

portional to t2near g=O. This seems to be a genernl
result and indicates the unsuitability of the outer
solution alone for the discussion of separation-point
characteristics. On the other hand, the outer solution
is very close to the joined solution for the fist profile
(going downstream from the stagnation point), and is
not very diilerent for the second profile. It would
appear, therefore, that the outer solution alone prob-
ably represents a fairly satisfactory approximation in
general, as long as the immediate neighborhood of a
separation point is not approached.

For the single-roof velocity distribution discussed in
this section, the Pohlhausen method of approximate
integration of the boundary-layer equations also leads
to simple expressions. In deriving these expressions
it is again necessary to consider the single-roof profile
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as a limiting case of a double-roof profile, but this the outer solution is known to be inexact near a sep-
Iimiting process is very easily cm.riedout, and leads to aration point, this agreement serves to cast some doubt
the following simple form of the Pohlhausen equations: on the Pohlhausen solution in such a region.

4.0
U=.849 LJ:

4 1
,7 Toco

Complefejoined soluft‘on 1
— — — Ou+er solution only , , 4=o.%2-1

-------- Pohlhousen solution
- .------

,.-
.

/.-
3.0— —

.
!/ — u“ .930 a

u=u, ‘
,

2.0
;

— U= .9625 LL
# H

/ “

]

t
,’

,:
.-”---

I 0 / /

/’ ,,-~
--g , I

,

,’

/

;’ Nofe chonge

v
r “ in .scole

——— —
.I 0’! .12 .14 ;.16 2E0

1

0 .02 .04 ~e .06 .08
Seporotion pothf,.’ Sepora+ion point, ..,’ Separation pomt.’-
compleie solution Pohlhausen solution oufer solution

FIGWBE9.—Velocity protlks and boundary-layer thickness for the single-roofpotential velocity dBtribntion.

J
IA= 0

–213.12+5.76~+q2
dqk —7257.6+ 1336.32T—37.92v2—0.8v3 (43)

,1

,1

% ?
FIGURE 10.—The double-roof profile.

The function Ix(A) may be evaluated analytically or
more simply with an integraph. For the separation
point x= —12 which gives a.= 1.404. Boundary-layer
proiiles have been calculated from (43) for this value
of a as well as for the two values considered above
with our joined and outer solutions. The results are
plotted in figure 9 as dotted curves. The agreement
with our solutions is quite good for the first two pro-
files, and at the third profle the outer and Pohlhausen
solutions are in remarkably good agreement. Since

The expressions for Rs. as calculated by the three
methods ire:

R6, (joined solution)= 2.18
d%fi

R~~(outer solution) = co

R*, (Poblhausen) %fi
‘2”g3 @,-l

(44)

14. THE BOUNDARY LAYER FOR A “ DOUBLE-ROOF
PROFILE “

The results of the last section are particularly sim-
ple but the single-roof profile is too restricted to serve
as a satisfactory approximation to many potential
velocity distributions. The double-roof profile, in-
volving one more free parameter, is considerably more
flexible, and may have a much wider field of applica-
bility. In this section, therefore, the separation-point
characteristics of a double-roof profle are investigated.

The notation adopted is defined in the following
equations, and illustrated graphically in figure 10.

For O<@pl, U2=bq
For pl~p, W=(b+p)q, –f?q}

(45)

We are primarily interested in separation phenom-
ena and will therefore restrict our considerations to
the region q> PI, in which region only can separation
occur. From equations (16) and (19) we obtain for
the outer solution corresponding to the flow of figure
10:

Za(% 4)= {(~+ P)%- Brf}h*+h@l-h*),
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“here‘l=’I(*)’h’*=’I(*)’and~’z’‘s‘e-
fined in (14), (19), and plotted in figure S. It is

.
convenient to replace z. by ~ in the following, where

{
We get at once :=1–2 hl”+~(hl–hi”)

1
(46)

‘sabove’“e“’it’5=$
(Jx)so that hl=hl($), hl*=hl g

Considering ~ as a function of y, $ and restricting our

attention for the moment to variation with q, it ap-

pears that there are in (46) two variables: ~z and

d---$&. However, the relation which must exist be-

tween these two variables is very easy to deduce.

()..J–I?==l 1+}
by Y

or

, _ 1+:—_ —
‘–91 1–~by

Equation (46) may therefore be rewritten:

For

(47)

The variable ~, defining position along the q axis,
and the parameter r, giving the ratio of the slopes of
the two portions of the double-roof profile, recur con-
tinually throughout the succeeding analysis.

The first problem is now to investigate the joining
of the above outer solution with the inner solution so
as to determine the location of the separation point.
Equation (34) gives, for the inner solution at the
separation joining point

()0.404 c, ~—— —
‘f’– J% Zo

(%),=2’2’%Y
.— ,—

(48)

To join the two solutions, we must now require that

In view of the fact that g, is small, the most satisfac-
tory method which has been found for proceeding with
this calculation is to use the power series expanion of
hl(z) about x = O. Using the expansion which is given
in section 8 for the probability integral occurring in
hl, the espansion is found to be

hl(z)=0.5000– l.1284 Z+ Z2–0.3761 d+ . . . . .
The next term in the series is of degree 5 in x and its
neglect has been found to cause no perceptible errors
in the results, so that for purposes of calculation tlm
series is cut off after the term in d. Substituting this

()~,~u
expressionfor hl(x) in (47) and putting = O,we

#j
obtain $tij=jl (8, r). This in turn leads to expressions
of the form

At the separation point T3= 8,. Using these relutions
and the second equation of (48), the conditions

lead to a relation of the form ~, = ~.(~).

From equations (47) and (48) we now determine the

separation point values of $; &j, and E=&j —Lj as

functions of the parameter r. The numerical results

are indicated by the curves of figure 11.

Before proceeding to the determination of the actkd

position of the separation point, let us consider for a

moment the value of R;S= the boundary layer
Reyuolds Number at the separation point. I’rom
equations (33) and (33a) this is given by

I

I
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In carrying out the numerical calculations the integral
in &* was evaluated with a Coradi integraph for a
series of values of 0s, i.e., a series of values of r.

The essentialresults of the analysis to this point may
now be presented in the form 0,= O&) and 6*=6*(T);
the results are therefore expressed in terms of the
single parameter r. In proceeding to the final results
(separation-point location and value of Rjs) it is
necessary to introduce one more parameter which we
take to be p,. l?rom the original relation U’ = (b+ @q,
- pp, and from the definition of u it follows immedi-
ately that
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IIOUISE 11.—Soparation, loinfwPOint charactcristim for tho doublo-roof proslo.

If we therefore write
l+T

“=l+mo’

A,* =
d

2(1+?’)
T(l + w) 6’*

where 0, and A,* are functions of r only, then

% = w%

RS,

m=
&&* 1

(50)

(51)

The functions 0. and A,* are plotted in figure 12 as

functions of r=;. Figure 12 and equations (51) give the

position of the separation point (P,) and the corre-
Rs~

spondiig value of —
-@

for any double-roof profile, in

termsof the two parameters T=~and pl. The extreme

simplicity with which all of the major separation-point
characteristics may be determined, for the rather
general class of potential flows considered, is quite re-
markable.1

Two rather interesting results of the above analysis
are worthy of special mention. First the small magni-
tude of the dependence of 6,* on r is illustrated by the
curve of 6,* vs. r which is included in figure 12. In
view of the definition of N from equation (33)

8,*=&-@@,

where & is the actual dimensionless boundaly-layer
thickness, this nearly constant value of 6.*= 2.5
means that we have

~ ~. 2.5 1
‘ -&@

24

20 3.2

16 2.8

0. 6=●

12 2.4
As’

8 2.0

4

0 .04 .08 .12 .16 .20 .24
r

FIGURE12.—Gcnoral functions giving aaparotion-pofrstcfmracteristics for the donble-
roof prodfe.

In other words, for a given Reynolds Number R, the
thickness of the boundary layer at the separation point
is approximately inversely proportional to the slope of
the second portion of the U’(9) (or U(z)) proiile, and
independent of the maximum value of U or of the man-
ner in which it is reached, i.e., independent of b or pl.
The second interesting result lies in the type of simi-

1Siica&behaves approximately like ~ sc r approaches zero, it would appear that

the function rO,might have some physical interest. Actrrolly it ic easy to abow that

#2-1–r (e.–I) and thii function does have an obvious pbysid si@enrrce. FOr

the limitiig case r=O, which corresponds to the single-roof profile, we have forrrsd

~=& O.806(cf. equation 41). AS r ~crc=w ~ fIICICS21XPmcti@Y fin~lY to

a valne of 0.8S0at r= O.25. In other words, as the distance rdong tbe bonrrdsry from
the stagnation point to the point of mammn potential velocity increases, the Po-
tential velocity at which separation oconrs, approaches more rmd more closely to the
msxinmrn velocity. ThE is exactly the behavior wldch simple physical considers
tfons wonld suggest.
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larity law which is found to hold for a family .of double-
roof profiles. For, if we consider a family of such
profiles, all of which have the same values of pl and of

r as in figure 13, then the values of ps and of —S are
$

identical for all the members of the family and for all
values of R. This may be considered as an extension
of the -well-known general boundary-layer theorem
which states that for any given potential flow function
the position of the separation point along the surface z.,

and the value of —s are both constant and independent
%

of R.

II
II

FIGUZE 13.—Famify of sfmiiar potsntiaf vofocity distributions giving the same

Vi3hlI?Sof q. and ofRzj@.

CONCLUSION

In the above sections we have developed a new
method for determining g approximately the characteris-
tics of a laminar boundary layer. General formulas
and procedures have been explicitly given enabling the
direct application of the method to a rather general
class of external flow functions. Two examples are
considered in detail and represent approximations to
the type of flow which takes place over the upper sur-
face of an airfoil. Inmost practical cases the boundary
Ia.yer is turbulent over the main portion of the airfoil
section, but the characteristics of the small laminar

region ilownstrearn ffom’ the stagnation point have a
great tiuence on the “transition phenomena” which
determine the maximum lift at low and moderate
values of Reynolds’ Number. In the first example,
the calculation of the boundary layer starts from the
point where the potential velocity has its maximum
value, and the development of the boundary layer and
the location of the separation point are investigated in
their dependence on the rate at which the velocity de-
creases with the distance from the point of maximum
velocity. In the second example, the calculation starts
from the stagnation point and the effects of both the
region of increasing velocity and that of decreasing ve-
locity are taken into account. In the latter example,
the numerical calculations are restricted to the chmac-
teristics of the boundary layer at the separation point.

The authors wish to express their indebtedness to
Dr. N. B. Moore for his kindness in checking the der-
ivations of the formulas of this paper.
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